Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The important mechanical parameters and their hierarchy in the growth and folding of the human brain have not been thoroughly understood. In this study, we developed a multiscale mechanical model to investigate how the interplay between initial geometrical undulations, differential tangential growth in the cortical plate, and axonal connectivity form and regulate the folding patterns of the human brain in a hierarchical order. To do so, different growth scenarios with bilayer spherical models that features initial undulations on the cortex and uniform or heterogeneous distribution of axonal fibers in the white matter were developed, statistically analyzed, and validated by the imaging observations. The results showed that the differential tangential growth is the inducer of cortical folding, and in a hierarchal order, high-amplitude initial undulations on the surface and axonal fibers in the substrate regulate the folding patterns and determine the location of gyri and sulci. The locations with dense axonal fibers after folding settle in gyri rather than sulci. The statistical results also indicated that there is a strong correlation between the location of positive (outward) and negative (inward) initial undulations and the locations of gyri and sulci after folding, respectively. In addition, the locations of 3-hinge gyral folds are strongly correlated with the initial positive undulations and locations of dense axonal fibers. As another finding, it was revealed that there is a correlation between the density of axonal fibers and local gyrification index, which has been observed in imaging studies but not yet fundamentally explained. This study is the first step in understanding the linkage between abnormal gyrification (surface morphology) and disruption in connectivity that has been observed in some brain disorders such as Autism Spectrum Disorder. Moreover, the findings of the study directly contribute to the concept of the regularity and variability of folding patterns in individual human brains.more » « less
-
Global Functional Connectivity at Rest Is Associated with Attention: An Arterial Spin Labeling StudyNeural markers of attention, including those frequently linked to the event-related potential P3 (P300) or P3b component, vary widely within and across participants. Understanding the neural mechanisms of attention that contribute to the P3 is crucial for better understanding attention-related brain disorders. All ten participants were scanned twice with a resting-state PCASL perfusion MRI and an ERP with a visual oddball task to measure brain resting-state functional connectivity (rsFC) and P3 parameters (P3 amplitudes and P3 latencies). Global rsFC (average rsFC across the entire brain) was associated with both P3 amplitudes (r = 0.57, p = 0.011) and P3 onset latencies (r = −0.56, p = 0.012). The observed P3 parameters were correlated with predicted P3 amplitude from the global rsFC (amplitude: r = +0.48, p = 0.037; latency: r = +0.40, p = 0.088) but not correlated with the rsFC over the most significant individual edge. P3 onset latency was primarily related to long-range connections between the prefrontal and parietal/limbic regions, while P3 amplitudes were related to connections between prefrontal and parietal/occipital, between sensorimotor and subcortical, and between limbic/subcortical and parietal/occipital regions. These results demonstrated the power of resting-state PCASL and P3 correlation with brain global functional connectivity.more » « less
-
Background: Biomarkers for Alzheimer’s disease (AD) are crucial for early diagnosis and treatment monitoring once disease modifying therapies become available. Objective: This study aims to quantify the forward magnetization transfer rate (kfor) map from brain tissue water to macromolecular protons and use it to identify the brain regions with abnormal kfor in AD and AD progression. Methods: From the Cardiovascular Health Study (CHS) cognition study, magnetization transfer imaging (MTI) was acquired at baseline from 63 participants, including 20 normal controls (NC), 18 with mild cognitive impairment (MCI), and 25 AD subjects. Of those, 53 participants completed a follow-up MRI scan and were divided into four groups: 15 stable NC, 12 NC-to-MCI, 12 stable MCI, and 14 MCI/AD-to-AD subjects. kfor maps were compared across NC, MCI, and AD groups at baseline for the cross-sectional study and across four longitudinal groups for the longitudinal study. Results: We found a lower kfor in the frontal gray matter (GM), parietal GM, frontal corona radiata (CR) white matter (WM) tracts, frontal and parietal superior longitudinal fasciculus (SLF) WM tracts in AD relative to both NC and MCI. Further, we observed progressive decreases of kfor in the frontal GM, parietal GM, frontal and parietal CR WM tracts, and parietal SLF WM tracts in stable MCI. In the parietal GM, parietal CR WM tracts, and parietal SLF WM tracts, we found trend differences between MCI/AD-to-AD and stable NC. Conclusion: Forward magnetization transfer rate is a promising biomarker for AD diagnosis and progression.more » « less
An official website of the United States government
